Ionospheric Conductances and the Inner Magnetosphere

Lutz Rastaetter, J.W. Gjerloev, M. Kuznetsova, M. Hesse, NASA GSFC, Greenbelt MD

D. DeZeeuw, A. Ridley, T.I. Gombosi, U. Michigan

SM22B-03 AGU 200 Spring Meeting, May 28, 2002

Motivation

Conductance of ionosphere strongly affects electrodynamics. Ionosphere is critical for dynamics of magnetosphere.

This study intends to:

Investigate impact of ionospheric conductances on

- field-aligned currents drawn from the magnetosphere
- electric field and potential patterns generated

Find new ways to improve current conductance models:

- increase robustness of results against variations of spatial resolution in magnetospheric part of simulation
- produce saturation of electric potentials as observed

Study Conditions

IMF: $B_v=0$, $B_z=-5nT$

Solar wind: $V_x = 500 \text{km/s}$, $N = 5/\text{cm}^3$

- 1. Conductance model comparison (at given resolution)
- different statistical models for conductances
- ☐ different constant conductances

Look at:

- effects on potentials, currents
- dependence of currents on average conductances
- 2. Spatial resolution study:
- \square $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$ R_E resolution ($\frac{1}{16}$ R_E planned)

Look at:

- electric potentials with same model / conductance
- field-aligned currents (minimum, maximum, integrated)

1) Conductance model affects potential

no-surprise here, of course □

2) Spatial resolution study

Why do potentials increase with better resolution?

MHD resolution affect currents

(!): Integrated currents increase with better MHD resolution.

No surprise: Currents increase also with higher conductance.

Conclusions

(of resolution and conductance comparisons)

- ☐ For given conductance model, currents increase with better MHD resolution.
- ☐ Currents increase with higher conductance
 - \Box this is a feedback effect influencing the inner magnetosphere.

Dependence of potential on currents

FAC are determined by **MHD** resolution (as shown before). **FAC-dependent** models (Ridley, Gjerloev, in polar cap) show weaker increase than **fixed-conductance** models (Hardy, 10-mho).

Feedback?

Current-dependent models tend to increase potentials compared to fixed-conductance models with same average conductance

Cause: currents into the ionosphere lead to higher conductances to create positive feedback.

☐ Higher overall conductances reduce potentials by overcompensating the increased currents drawn into the ionosphere.

Conclusions

	low-resolution BATSRUS runs seem to fare as well as statistical potential models (Weimer $\Box 2K$)
	Increasing MHD resolution does not necessarily improve performance (potentials can be overestimated)
	 □ MHD resolution at about 1/3 R_E comparable with statistical model □ 2000 GEM Metric challenge run performed at CCMC yielded highest skill score at 1/2 R_E resolution (without changing other parameters).
	Higher currents for high resolution simulations indicate more efficient feedback between ionosphere and magnetosphere.
Outlook:	
	Develop Gjerloev model to account for varying spatial resolution of the MHD model
	Compare BATSRUS results with other MHD models - UCLA-GGCM with CTIM shows higher currents and uses higher conductances to arrive at similar potentials

Gjerloev model

Goal:

Generate resolution-independent ionospheric potentials

Method:

Use DE-2 data (statistical model similar to Ridley, Hardy 87) Use **spatially averaged FAC** to enter statistical FAC-conductance relationship.

- □ Width of averaging window can account for expected scale of FAC from MHD simulation:
- ☐ Increase feedback between FAC and conductances to draw more current at low MHD resolution.
- ☐ Reduce feedback to draw less current at high resolution.